Showing posts with label Beton. Show all posts
Showing posts with label Beton. Show all posts

Ruang Lingkup Penyelidikan Dan Pengujian Teknik Sipil

Teknik Sipil merupakan salah satu cabang ilmu teknik yang mempelajari tentang bagaimana cara merencana, membangun dan merenovasi suatu bangunan seperti gedung, jalan jembatan dan infrastruktur lainnya. 

Teknik Sipil mempunyai ruang lingkup yang luas sehingga dalam pelaksanaannya melahirkan cabang-cabang ilmu teknik sipil. Di dalam keseharian kita mengenal Teknik Sipil dengan istilah Sipil Kering dan Sipil Basah. Apa maksud dari penjelasan sipil kering dan sipil basah tersebut…???

Ruang Lingkup Penyelidikan Dan Pengujian Teknik Sipil

Sipil Kering umunya tertujuh pada suatu konstruksi seperti gedung, jalan raya, jembatan. Sedangkan Sipil Basah tertujuh pada bidang Sumber Daya Air (SDA) seperti Teknik Irigasi. Seiring dengan pesatnya laju teknologi, maka lahirlah cabang-cabang Ilmu Teknik Sipil. Seperti Teknik lingkungan, Transportasi, Hidrologi, Manajemen Konstruksi, Struktural, Geoteknik dan Informatika Teknik Sipil.

Dalam pelaksanaan kegiatan konstruksi, baik sebelum pelaksanaan dan saat waktu pelaksanaan berjalan maka di lakukan suatu penyelidikan dan pengujian terhadap material. Berikut penjelasan singkat beberapa penyelidikan dan pengujian.


Penyelidikan Tanah Lapangan

a) Pengeboran Geoteknik;
b) Standard Penetration Test (SPT);
c) Sondir;
d) Sampling Undistrubed Sampel;
e) Sampling Distubed Sampel;
f) Dynamic Cone Penetrometer (DCP);
g) California Bearing Ratio (CBR) Lapangan;
h) Plate Load Test;
i) Sandcone;
j) Electrical Density Gauge;
k)Geolistrik/Soil Resistivity.


Pengujian Laboratorium Tanah & Batuan

a) Berat Jenis Tanah;
b) Kadar Air Tanah & Batuan;
c) Batas Atterberg;
d) Bobot Isi Tanah;
e) Analisa Butiran Tanah;
f) Indeks Propertis Batuan;
g) Kuat Geser Tanah;
h) Kuat Geser Batuan;
i) Kuat Tekan Tanah;
j) Kuat Tekan Batuan;
k) Triaksial Tanah;
l) Triaksial Batuan
m) Kuat Tarik Belah Batuan;
n) Point Load Index;
o) Konsolidasi Tanah;
p) Pemadatan Tanah;
q) CBR Laboratorium;
r) Permeabilitas Tanah & Batuan;
s) Kuat Lekang (Slake Durability);
t) Kandungan Kimia;
u)Analisa Mineralogi.


Pengujian Laboratorium Material Agregat, Semen

a) Berat Jenis & Penyerapan Agregat Kasar & Halus;
b) Kadar Air Agregat;
c) Agregat Lolos No. 200;
d) Gumpalan Lempung & Butir Mudah Pecah;
e) Bobot Isi Agregat;
f) Los Angeles Abrasi;
g) Analisa Saringan;
h) Bahan Organik dalam Agregat Halus;
i) Kepipihan & Kelonjongan Agregat;
j) Kekekalan Agregat;
k) Berat Jenis Semen;
l) Waktu Pengikatan & Konsistensi Normal Semen;
m) Desain Pencampuran LPA (Mix Desain LPA);
n) Desain Pencampuran Beton (Mix Desain Beton);
o) Kuat Tekan Beton;
p) Kuat Lentur Beton;
q) Kuat Tekan Material (Mortar, Bata Merah, Bata Ringan).


Pengujian Material Agregat

a. Berat Jenis & Penyerapan Agregat Kasar;
b. Berat Jenis & Penyerapan Agregat Halus;
c. Kadar Air Agregat;
d. Bobot Isi dan Rongga Udara Agregat;
e. Analisa Saringan Agregat;
f. Kandungan Zat Organik Agregat Halus;
g. Los Angeles Abrasi (Keausan Agregat);
h. Kepipihan Agregat;
i. Kelonjongan Agregat;
j. Kekekalan Agregat dengan Natrium Sulfat;
k.Nilai Kehancuran Agregat.


Pengujian Perkerasan Jalan

a. Kepadatan/Kompaksi Tanah;
b. CBR Laboratorium;
c. Butiran Pecah Agregat;
d. Gumpalan Lempung & Butir Mudah Pecah;
e. Rancangan Campuran Lapis Pondasi Agregat;


Pengujian Geoteknik

a. Batas Atterberg Tanah;
b. Bobot Isi Tanah;
c. Berat Jenis Tanah;
d. Kadar Air Tanah;
e. Analisa Ukuran Butiran Tanah;
f. Kuat Geser Langsung Tanah;
g. Kuat Tekan Bebas Tanah;
h. Triaksial Tanah;
i. Konsolidasi Satu Dimensi Tanah;
j. Permeabilitas;
k.Indeks Propertis Batuan.


Pengujian Beton & Material

a) Berat Jenis Semen;
b) Waktu Pengikatan & Konsistensi Normal Semen;
c) Indeks Kekuatan;
d) Rancangan Pencampuran Beton;
e) Kuat Tekan Beton;
f) Kuat Lentur Beton;
g) Kuat Tekan Bata Merah;
h) Kuat Tekan Bata Ringan;
i) Kuat Tekan Paving Block;
j) Uji Ukuran dan Berat Material;
k) Uji Tarik;
l) Uji Lengkung;


Pengujian Air Asam Tambang & Kimia

a. pH Pasta;
b. EC pasta;
c. Kapasitas Penetralan Asam (ANC);
d. Penentuan Asam Neto (NAG);
e. Potensi Keasaman Maksimum (MPA);
f. Nilai Potensi Produksi Asam Netto (NAPP);
g. Rasio Potensi Penetralan (NPR);
h. Kandungan Pasir Silika;
i. Kandungan Pasir Zirkon;
j. Kesuburan Tanah;
k. Kandungan LimeStone;
l. Kandungan Lempung;
m. Kandungan Mineralogi;
n. Petrografi.


Pengujian Barang Curah Padat

a) Transportable Moisture Limit (TML);
b) Combustible Solids;
c) Self-heating Solids;
d) Corrosive Solids;
e) Toxic Solids.


ANALISA DAN PEMANTAUAN LINGKUNGAN

1.Analisa Air:
   a) Air Minum;
   b) Air Limbah (Settling Pond, Domestik, Oil Trap, Blowdown Boiler, Sawit, dll);
   c) Air Sungai/Permukaan;
   d) Air Laut;
   e) Air Sumur Pantau;
   f) Air Danau;
   g) Air untuk keperluan higiene dan sanitasi;
2.Analisa Mikrobiologi;
3.Analisa Biologi (Plankton, Benthos);
4.Analisa Udara Ambient dan Emisi;
5.Analisa Kesuburan Tanah;
6.Analisa CPO;
7.Monitoring Lingkungan dan Lingkungan Kerja.


Inspeksi

a) Pile Drive Analyzer (PDA);
b) Pile Integrity Tester (PIT);
c) Crosshole Sonic Logging (CSL);
d) Uji Hammer Beton;
e) Rebar Scanner;
f) Core Drill Beton;
g) Stockpile Survey;
h) Quantity Survey;
i) Distance Survey;
j) Survey Topografi;
k) Survey Bathymetri;
l) Asesemen Konstruksi.


INSPEKSI LAPANGAN

a) Pengeboran Dalam / Deep Boring;
b) Pengujian SPT (Standard Penetration Test);
c) Pengujian Sondir / Dutch Cone Penetrometer;
d) Pengujian DCP (Dynamic Cone Penetrometer);
e) Pengujian Kepadatan Tanah Lapangan dengan Sandcone;
f) Pengujian Kepadatan Tanah Lapangan dengan Electrical Density Gauge (EDG);
g) Pengujian CBR Lapangan;
h) Pengambilan Sampel Tanah Tak Terganggu / Sampling UDS;
i) Geolistrik atau Soil Resistivity;
j) Pengujian Kekuatan Tiang Pancang (PDA test);
k) Pengujian Keutuhan Tiang Pancang (PIT test).

Demikian penjelasan ruang lingkup penyelidikan dan pengujian dalam bidang Teknik Sipil. Terimah kasih.


Baca Artikel...

Teori Pada Perhitungan Beton

Beton merupakan material konstruksi yang komposisinya terdiri dari Semen, agregat kasar, agregat halus, Pasir dan bahan tambahan lainnya. Pemakaian beton untuk konstruksi telah berkembang pesat, mengingat bahan-bahan pembentuknya yang mudah terdapat di negara Indonesaia. 

Pada teori perencanaan beton di Indonesia lazimnya digunakan teori elastisitas, dimana angka ekivalen n adalah tetap dimana diambil besaran n yaitu 15 dengan mutu beton fʼc = 225 kg/cm2 dan kwalitas besi fs = 1200 kg/cm2.

Dengan kemajuan teknik pembuatan beton yang lebih baik terutama pada proyek-proyek besar, maka dalam perkembangannya telah dibuat mutu dengan kwalitas beton yaitu fʼc = 600 kg/cm2. 


Teori Perhitungan Beton


1. Teori Elastisitas Beton;

2. Teori Ultimate Beton;

3. Teori Beton Pratekan.


Penjelasan dari masing-masing teori perhitungan beton sebagai berikut :

1. Teori Elastisitas Beton

Teori perhitungan beton dengan cara Elastisitas secara tepat, harusla menggunakan angka Ekivalen "n" yang sesuai dengan kwalitas dari masing-masing beton dan besi yang akan dipakai.

 

2. Teori Ultimate Beton

Perhitungan beton dengan cara Ultimate ( Ultimate Strength Design ) didasarkan atas timbulnya kehancuran ( failure ) yaitu akan adanya terjadi kehancuran ( failure ) bila tegangan pada besi telah mencapai tegangan leleh (fy) yield stress  dan tegangan beton telah mencapai tegangan hancur (fʼc).


Dalam perhitungan perencanaan, untuk mencegah adanya kehancuran, maka perlu adanya usaha untuk menaikkan beban yang harus dipikul oleh suatu bagian konstruksi. Beban-Beban ini antara lain : Beban Sendiri (Dead load ; D.L) Beban Gerak (Live Load:L.L), Beban Angin (Wind Load) dan Beban Gempa (earthquake) atau beban lainnya. Cara menaikkan beban-beban tersebut yaitu dengan cara menggunakan Faktor Keamanan (factor of safety) konstruksi yang menjamin pencegahan kehancuran dimaksud.  

Jadi cara perhitungan ini jelas telah melampaui daerah elastisitas (proportional point) dan dengan sendirinya tidak mengenal lagi yang dinamakan angka ekivalen n.  


A. Beberapa anggapan yang digunakan dalam penentuan pada perencanaan teori ultimate adalah sebagai berikut :

1. Beton tidak menerima gaya tarik, sehingga semua gaya tarik dipikul oleh besi;

2. Sebelum pada saat memikul lentur akibat pembebanan, semua penampang tetap datar (Theorema Bernoulli);

3. Jika telah mendekati ultimate strength, maka diagram tegangan dan spesifik ulur tidak lagi proportional;

4. Tegangan serat maximum (The maximum fibre stress) akibat suatu lentur diambil sama dengan kekuatan prisma beton;

5. Tegangan tarik dan tejan yang timbul pada besi tidak boleh melebihi tegangan lelehnya (fy).


B. Suatu bangunan konstruksi dikatakan sudah hancur akibat suatu pembebanan apabila :

1. Tegangan tekan pada bagian konstruksi tersebut telah mencapai kekuatan kehancuran = fʼc;

2. Tegangan tarik pada bagian besi yang dipikulnya telah mencapai tegangan lelehnya (fy). 


Bedasarkan hal-hal tersebut diatas, maka ada 3 (tiga) kemungkinan timbulnya kehancuran (failure) yaitu :

1. Apabila yang tercapai lebih dulu tegangan leleh (fy) minimum besi, maka konstruksi bangunan ini disebut "under reinforced".

2. Apabila yang tercapai lebih dulu tegangan hancur (fʼc) beton (The crushing strength of concrete), maka konstruksi ini disebut "over reinforced".

3. Apabila terjadi tegangan hancur beton dan tegangan leleh besi tercapai pada saat bersamaan, maka konstruksi ini disebut dengan "balanced reinforced".


3. Teori Beton Pratekan

Beton Pratekan adalah suatu konstruksi beton dimana bila  pada konstruksi beton diberi tekanan dengan gaya khusus, maka beton akan tertekan, sehingga disaat konstruksi diberi beban/tekanan, tegangan tarik tidak akan timbul.

A. Jenis Beton Pratekan

Beton Pratekan terditi atas 2 (dua) jenis yaitu :

1. Konstruksi Beton Pratekan Penuh;

2. Konstruksi Beton Pratekan Terbatas.


Penjelasan dari masing-masing Jenis beton Pratekan sebagai berikut :

1. Konstruksi Beton Pratekan Penuh adalah kontruksi beton sewaktu diberi beban maximum tidak akan timbul tegangan tarik.

2. Konstruksi Beton Pratekan Terbatas yaitu konstruksi beton dimana setelah dibebani tekanan maximum masih timbul tegangan-tegangan tarik sampai pada batas-batas tertentu. Tegangan tarik ini biasanya tipikul oleh pembesian biasa.


B. Bagian Dalam Penampang Beton Pratekan

1. Penampang Beton Pratekan, terdapat dua daerah yaitu daerah tekan dan daerah tarik pratekan.

a. Daerah Tekan adalah daerah dimana saat konstruksi dibebani, menerima tegangan tekan, sungguhpun tidak diberikan gaya pratekan;

b. Daerah tarik pratekan adalah daerah yang apabila tidak diberi pratekan, ddan apabila diberi beban akan mengalami tegangan tarik.

2. Penampang pembesian beton pratekan, terdapat dua macam pembesian yaitu kabel pratekan dan pembesian biasa.

a. Kabel pratekan terdiri dari kawat-kawat baja bermutu tinggi yang merupakan bagian utama pembangkit gaya pratekan;

b. Pembesian biasa adalah besi beton biasa yang memikul bagian-bagian yang tidak diberi pratekan.


Demikianlah penjelasan singkat tentang Teori Perhitungan Beton. Terimah kasih.

Baca Artikel...

Pekerjaan Lapisan Perkerasan Beton

Pada pembahasan sebelumnya telah dijelaskan bahwa perkerasan pada konstruksi jalan dibagi menjadi dua jenis yaitu perkerasan lentur (flexible pavement) dan perkerasan kaku (riqid pavement). Struktur dari Perkerasan kaku (rigid pavement) umumnya terdiri dari tanah dasar, lapis pondasi bawah dan lapis beton semen dengan atau tanpa tulangan. Pada kesempatan ini akan melanjutkan lagi pembahasan tentang konstruksi perkerasan beton (rigid pavement). 

Pekerjaan Lapisan Perkerasan Beton


Penjelasan perkerasan beton sebagai berikut:

1. PEKERJAAN PERKERASAN BETON PADA DAERAH CURAM  

    Untuk perkerasan jalan beton dengan kemiringan memanjang lebih besar dari 3 %,
    maka harus ditambah dengan Angker Panel (Panel anchored) dan Angker Blok (Anchor Block).
    Jalan dengan kondisi ini harus dilengkapi dengan angker yang  melintang  untuk  keseluruhan
    lebar  pelat  sebagaimana  diuraikan  pada  Tabel  dan diperlihatkan pada Gambar dibawah ini.


Perkerasan Beton pada daerah curam ditambah angker panel


Perkerasan beton pada daerah yang curam ditambah angker blok





2. SAMBUNGAN PERALIHAN ANTARA PERKERASAN ASPAL DAN BETON  

   Sambungan peralihan antara perkerasan aspal dengan perkerasan beton Perlu adanya Slab Transisi     dan Perlu adanya Batang Pengikat. Pada gambar dibawah ini dapat dilihat typical sambungan   
   peralihan antara perkerasan aspal dan perkerasan beton.

Sambungan Peralihan Antara Perkerasan Aspal Dan Beton



3. PELAPISAN TAMBAHAN PERKERASAN BETON ASPAL DI ATAS 
    PERKERASAN  BETON

   Struktur perkerasan beton semen harus dievaluasi agar supaya tebal efektifnya dapat dinilai   
   sebagai  aspal beton. Untuk menentukan  tebal efektif (Te) setiap lapisan perkerasan  yang ada   
   harus   dikonversikan  kedalam  tebal  ekivalen  aspal  beton  sesuai  dengan  Tabel  12. Dengan
   demikian  tebal lapis tambahan  yang diperlukan,  dihitung berdasarkan  perhitungan lapis
   tambahan pada perkerasan lentur.Dalam  menentukan  tebal  ekivalen  perkerasan  beton  semen
   perlu  memperhatikan  kondisi dan daya dukung lapisan beton semen yang ada.

   Apabila  lapisan-lapisan  perkerasan  telah  diketahui  dan  kondisinya  ditetapkan,  kemudian
   faktor konversi yang sesuai dipilih pada Tabel berikut dan tebal efektif dari setiap lapisan dapat 
   ditentukan.

   Tebal  efektif  setiap  lapisan  merupakan  hasil  perkalian  antara  tebal  lapisan  dan faktor
   konversi.  Tebal efektif untuk seluruh perkerasan merupakan jumlah tebal efektif dari masing- 
   masing lapisan.

   Tebal lapisan tambahan dihitung dengan rumus sebagai berikut :
       Tr = T – Te 

    Keterangan :
    Tr = tebal lapis tambahan
    T = tebal perlu berdasarkan beban rencana dan daya dukung tanah dasar dan atau
                   lapis pondasi bawah dari jalan lama sesuai prosedur yang telah diuraikan
    Te = tebal efektif perkerasan lama

    Tebal lapis tambahan perkerasan lentur yang diletakkan langsung di atas perkerasan beton semen
    dianjurkan  minimum  100 mm. Apabila  tebal lapisan  tambahan  lebih dari 180 mm, konstruksi
    lapis tambahan dapat menggunakan lapisan peredam retak sebagai mana terlihat pada Gambar   
    berikut.
Lapisan peredam retak pada sistem pelapis tambahan
4. PENGAMBILAN SLUMP BETON 

    Untuk Perkerasan beton semen pada umumnya dipersyaratkan nilai slump antara 2.5 – 6.0 cm
    hal ini tergantung dengan peralatan penghampar yang digunakan
    1. Untuk jenis fixes form (ACUAN TETAP) Slump 4.0 – 6.0 cm
    2. Untuk jenis slip form (ACUAN BERGERAK) Slump max 5.00 cm
    Toleransi ± 2.00 cm dari slump optimum(speksifikasi)

Demikianlah penjelasan tentang Pekerjaan Lapisan Perkerasan Beton , semoga bermanfaat. Terimah kasih.
Baca Artikel...

Struktur Lapisan Perkerasan Kaku

Secara garis besar perkerasan pada konstruksi jalan dapat dibagi menjadi dua jenis yaitu perkerasan lentur (flexible pavement) dan perkerasan kaku (riqid pavement). Dari kedua jenis perkerasan jalan tersebut yang paling esensi yaitu bagaimana perkerasan bereaksi terhadap beban dan bagaimana distribusi beban disalurkan ke tanah dasar (Subgrade).Pada kesempatan kali ini, Saya akan menjelaskan tentang struktur dari lapisan perkerasan kaku atau dikenal dengan istilah Riqid Pavement. 

Struktur Lapisan Perkerasan Kaku


Struktur dari Perkerasan kaku (rigid pavement) umumnya terdiri dari tanah dasar, lapis pondasi bawah dan lapis beton semen dengan atau tanpa tulangan. Struktur perkerasan kaku (rigid pavement)
secara tipikal dapat dilihat pada gambar dibawah ini.
Typical Struktur Perkerasan Kaku



1. TANAH DASAR
    Daya dukung tanah dasar ditentukan dengan pengujian CBR insitu sesuai dengan SNI 03-1731-   
    1989 atau CBR laboratorium sesuai    dengan SNI 03-1744-1989, masing-masing untuk
    perencanaan tebal perkerasan lama dan perkerasan jalan baru. Apabila tanah dasar mempunyai
    nilai CBR lebih kecil dari 2 %, maka harus dipasang pondasi bawah yang terbuat dari beton kurus
    (Lean-Mix Concrete) setebal 15 cm yang dianggap mempunyai nilai CBR tanah dasar efektif 5 %.

2. PONDASI BAWAH
    Bahan pondasi bawah dapat berupa :
    a.Bahan berbutir.
    b.Stabilisasi atau dengan beton kurus giling padat (Lean Rolled Concrete)
    c.Campuran beton kurus (Lean-Mix Concrete)

    Lapis pondasi bawah perlu diperlebar sampai 60 cm diluar tepi perkerasan beton semen. Untuk     
    tanah ekspansif perlu pertimbangan khusus perihal jenis dan penentuan lebar lapisan pondasi 
    dengan memperhitungkan tegangan pengembangan yang mungkin timbul. Pemasangan lapis 
    pondasi dengan lebar sampai ke tepi luar lebar jalan merupakan salah satu cara untuk 
    mereduksi prilaku tanah ekspansif.

    Tebal lapisan pondasi minimum 10 cm yang paling sedikit mempunyai mutu sesuai dengan 
    SNI No. 03-6388-2000 dan AASHTO M-155 serta SNI 03-1743-1989. Bila direncanakan 
    perkerasan beton semen bersambung tanpa ruji, pondasi bawah harus menggunakan 
    campuran beton kurus (CBK).

    Lapis pondasi bawah pada perkerasan beton semen adalah bukan merupakan bagian utama
    yang memikul beban, tetapi merupakan bagian yang berfungsi sebagai berikut :
   1. Mengendalikan pengaruh kembang susut tanah dasar.
   2. Mencegah intrusi dan pemompaan pada sambungan, retakan dan tepi-tepi pelat.
   3. Memberikan dukungan yang mantap dan seragam pada pelat.
   4. Sebagai perkerasan lantai kerja selama pelaksanaan.


3. PERKERASAN BETON SEMEN
    Struktur lapisan perkerasan kaku yang paling atas adalah perkerasan beton semen, dimana 
    struktur terdiri dari plat beton yang bersambung (tidak menerus) dengan tulangan atau tanpa       
    tulangan, atau  menerus dengan tulangan. Hal-hal yang harus diperhatikan pada saat 
    pelaksanaan pekerjaan pengecoran beton semen adalah kada air pemadatan, kepadatan dan 
    perubahan kadar air selama   masa pelayanan. Hal lain sebelum dilaksanakan pekerjaan 
    pengecoran permukaan lapis pondasi  
    ditutup dengan menggunakan plastik (mencegah kadar semen masuk kedalam lapis pondasi dan 
    sebagai lapis pemisah).
    Ada 4 jenis struktur lapisan perkerasan beton semen antara lain :
    1. Perkerasan beton semen bersambung tanpa tulangan
    2. Perkerasan beton semen bersambung dengan tulangan
    3. Perkerasan beton semen menerus dengan tulangan
    4. Perkerasan beton semen pra-tegang

3.1. SAMBUNGAN PERKERASAN BETON
       Sambungan pada perkerasan beton semen ditujukan untuk membatasi  tegangan  dan 
       pengendalian  retak yang disebabkan  oleh penyusutan, pengaruh lenting serta beban lalu-lintas,
       memudahkan pelaksanaan serta mengakomodasi gerakan pelat.
       Pada perkerasan beton semen terdapat beberapa jenis sambungan antara lain :
       a. Sambungan memanjang
       b. Sambungan melintang
       c. Sambungan isolasi
       Semua  sambungan   harus  ditutup  dengan  bahan  penutup  (joint  sealer),  kecuali  pada
       sambungan isolasi terlebih dahulu harus diberi bahan pengisi (joint filler).

3.2. SAMBUNGAN MEMANJANG

       Sambungan memanjang dengan batang pengikat (tie bars)

      Sebelum kita lanjut pembahasan, kita jelaskan dulu apa itu Batang Pengikat (Tie Bars) dan
      Batang Ulir (deformed bars). Batang Pengikat (tie bars) adalah sepotong  baja  ulir  yang   
      dipasang  pada  sambungan  memanjang  dengan  maksud untuk mengikat pelat agar tidak
      bergerak horizontal. Batang ulir (deformed bars) adalah batang tulangan  prismatis  atau yang
      diprofilkan  berbentuk  alur atau spiral yang terpasang tegak lurus atau miring terhadap muka
      batang, dengan jarak antara rusuk-rusuk tidak lebih dari 0,7 diameter batang
      pengenalnya/nominal.

Typical Sambungan Memanjang Perkerasan Beton


     Pemasangan sambungan memanjang ditujukan untuk mengendalikan terjadinya retak memanjang.
     Jarak antar sambungan memanjang sekitar 3  - 4 m. Sambungan memanjang harus dilengkapi
     dengan batang ulir dengan mutu minimum BJTU-24 dan berdiameter 16 mm. Jarak antar
     Batang Pengikat yang digunakan adalah 75 cm dan letaknya pada ½ tebal plat.

     Ukuran batang pengikat dihitung dengan persamaan sebagai berikut :
         At = 204 x b x h
         l  = (38,3 x φ) + 75 mm

     Catatan :
     At   = Luas penampang tulangan per meter panjang sambungan (mm2).
     b     = Jarak terkecil antar sambungan atau jarak sambungan dengan tepi perkerasan (m)
     h     = Tebal pelat (m).
     l      = Panjang batang pengikat (mm).
     φ    = Diameter batang pengikat yang dipilih (mm).


Typical Sambungan Memanjang Dengan Tie Bar


3.3. SAMBUNGAN MELINTANG 

       Tulangan sambungan melintang (Dowel) :
       1. Polos Ø 25 – 32 mm
       2. Panjang besi polos (dd) = 45 – 60 cm
       3. Letaknya pada ½ tebal plat
       4. Satu ujung terikat, ujung lainnya dibuat tidak lekat dengan cara : dibungkus plastik tipis
           atau dilapisi gemuk
       5. Diameter batang ulir tidak lebih kecil dari 12 mm.
       6.J arak maksimum tulangan dari sumbu-ke-sumbu 75 cm.


Typical Sambungan Melintang Dengan Dowel


Demikianlah penjelasan tentang Struktur Lapisan Perkerasan Kaku, semoga bermanfaat. Terimah kasih.
Baca Artikel...

Metode Kerja Pekerjaan Turap Beton

Sebelum memulai suatu pekerjaan kontraktor harus mempersiapkan semua yang menyangkut dalam pekerjaan tersebut. Sumber daya yang harus dipersiapkan mulai dari tenaga kerja (pekerja), peralatan dan bahan material. Selain itu kontraktor harus mempersiapkan Metode kerja yang mana ini sangat penting khusus saat pelaksanaan pekerjaan di lapangan.


Pengadaan dan Pemancangan Sheet Pile Type FPC 320 C500




1. Pekerjaan Persiapan

Sebelum pelaksaan fisik dimulai, terlebih dahulu dilakukan pekerjaan persiapan sebagai berikut:
a. Sosialisasi dan perijinan ke Pemda setempat dan pihak terkait dalam hal ini Dinas yang mengeluarkan pekerjaan.
b. Survey lokasi untuk fasilitator, kantor lapangan, base camp, gudang dan workshop .
c. Membuat atau menyediahkan fasilitas lain seperti Direksi Keet beserta bangunan lainnya (Sesuai gambar Kerja) yang dibutuhkan selama pekerjaan berlangsung.
d. Pembuatan dan pemasangan papan nama proyek yang ukuran dan redaksionalnya sesuai petunjuk Direksi.
e. Mobilisasi personil dan peralatan yang dibutuhkan selama pelaksanaan pekerjaan.
f. Mempersiapkan pembuatan jalan kerja untuk akses peralatan ke lokasi dan termasuk pula rencana pengaturan lalu lintas di dalamnya.
g. Pembersihan semak belukar dengan menggunakan alat Buldozer dan hasil dari pembersihan dikumpulkan di satu sisi batas bangunan, kemudian diangkut dengan alat excavator dan dibuang dengan dump truck ke lokasi pembuangan yang telah di tentukan. 

2. Pengadaan Sheet Pile Type FPC 320 C500

a. Untuk mempelancar dan memudahkan material Sheet Pile masuk ke lokasi kerja maka perlu dibuat akses jalan ke lokasi kerja.
b. Mobilisasi material Sheet Pile dari pabrik ke lokasi kerja menggunakan truck trailer.
c. Proses penurunan material Sheet Pile dan menumpuk dilokasi harus sesuai kebutuhan dan space  yang ada dengan menggunakan Service Crane yang telah disiapkan dilokasi.
d. Dalam pelaksanaan pengadaan yang harsu diperhatikan adalah Handling Method.
e. Cara pengangkatan CSP, pengangkatan dibuat dengan 2 atau 4 titik ikat. Dalam hal ini 2 titik angkat, kedudukan seling baja harus berada pada 2/10 dari total panjang dari kedua ujung tiang pancang.
f. Ilustrasi dari proses penurunan material sheet pile lihat pada gambar berikut.


Pengadaan Sheet Pile Type FPC 320 C500




3. Pemancangan Sheet Pile Type FPC C500

Pemancangan Sheet Pile menggunakan Vibro Hammer. Pemancangan Sheet pile dilaksanakan sesuai dengan ukuran atau   kedalaman sesuai yang ditunjukan dalam gambar kerja dan telah disetujui oleh Direksi. Wire Rope (Seling Baja) harus diperiksa terlebih dahulu secara hati-hati dan seling layak dipakai selama proses pemancangan. Ketika proses pengangkatan dan penurunan 2 titik penyangga harus sama tinggi dan cara 1 titik angkat sama sekali dilarang.

Metode kerja pemancangan sheet pile yaitu:
a. Crane diletakkan pada posisi titik pancang yang tekah direncanakan.
b. Tiang pancang ditarik atau diangkat sesuai dengan syarat penarikan/pengangkatan yang diizinkan untuk ditempatkan pada posisi yang lurus terhadap sumbu vibro hammer.
c. Tiang harus diangkat dan diturunkan secara bertahap sedemikan hingga tidak memberikan goncangan pada tiang.
d. Posisi titik angkat pada saat erection (pemancangan) titik angkat pada saat erection, ditentukan 3/10 total panjang tiang dari bagian atas dan titik angkat ini harus ditandai pada tiang.
e. Saat erection tiang pancang berada di ujung atas rig.
f. Setelah erection tiang pancang telah berhasil bisa dimulai pekerjaan pemancangan.
g. Pemancangan tiang pancang akan dimulai setelah konfirmasi posisi lurus terpenuhi.
h. Penggetaran pada pemancangan pertama harus dilakukan dengan softblow driving untuk memastikan bahwa arah pemancangan sudah benar atau sesuai.
i. Mulainya pemancangan untuk setiap tiang pancang adalah penggetaran berlangsung kontinyu sampai tiang pancang mencapai kedalaman tanah yang diharapkan.
j. Ilustrasi proses pemancangan material sheet pile lihat pada gambar berikut



Metode Kerja Pemancangan Sheet Pile Type FPC C500


Demikianlah penjelasan Metode Kerja Pekerjaan Turap Beton. Semoga bermanfaat, terimah kasih.
Baca Artikel...

Spesifikasi Teknik Beton Pracetak Untuk Lining Saluran Irigasi

Untuk menjaga agar kualitas dan kuantitas dari mutu beton Pracetak bermutu perlu adanya suatu Spesifikasi Teknis dari komposisi campuran beton Pracetak.

Proses pencampuran beton Pracetak baik di konstruksi jalan, jembatan, gedung dan irigasi perlu adanya acuan, standar atau Spesifikasi Teknis. Sehingga beton Pracetak yang telah selesai dibuat mempunyai kekuatan lentur dan kuat tekan karakteristik.
Spesifikasi Teknik Saluran Irigasi



Beton pracetak harus mempunyai suatu kuat lentur dan kuat tekan karakteristik minimum sesuai dengan  SNI 1972  tentang Cara uji slump beton,  SNI 1974  tentang Cara uji kuat tekan beton dengan benda uji silinder yang dicetak dan  SNI 4431 tentang Cara uji kuat lentur.

Penggunaan beton Pracetak untuk lining saluran irigasi harus sesuai dengan penjelasan diatas. 

Berikut ini bisa dijadikan referensi untuk digunakan dalam melaksanakan pembuatan Beton Pracetak dalam pekerjaan pelaksanaan pembuatan Lining saluran irigasi. 

1. SNI 1969, Cara uji berat jenis penyerapan  air agregat kasar
2. SNI 1970, Cara uji berat jenis dan penyerapan air agregat halus
3. SNI 1972, Cara uji slump beton
4. SNI 1974, Cara uji kuat tekan beton dengan benda uji silinder yang dicetak
5. SNI 2417, Cara uji keausan agregat dengan mesin abrasi Los Angeles
6. SNI 4431, Cara uji kuat lentur beton normal dengan dua titik pembebanan
7. SNI 03 - 2495, Spesifikasi  bahan tambahan untuk beton
8. SNI 03 - 2834, Tata cara pembuatan rencana  campuran beton normal
9. SNI 03 - 4433, Spesifikasi beton siap pakai
10. SNI 03 - 4804, Metode pengujian berat isi dan rongga udara dalam agregat


Selain mengacu pada persyaratan diatas, persyaratan lain  bisa dijadikan referensi yaitu : 

1. Persyaratan Beton (Bagian 6 dan 9 Pedoman Penggunaan Beton Pracetak Pada Saluran Irigasi)
2. Persyaratan Tulangan (Bagian 9 Pedoman Penggunaan Beton Pracetak Pada Saluran Irigasi)
3. Persayaratan kerja (Bagian 8 Pedoman Penggunaan Beton Pracetak Pada Saluran Irigasi)
4. Persyaratan peralatan (Bagian 7 Pedoman Penggunaan Beton Pracetak Pada Saluran Irigasi)

Demikianlah penjelasan Spesifikasi Teknik Beton Pracetak Untuk Lining Saluran Irigasi. Semoga bermanfaat. Terimah kasih.
Baca Artikel...

Desain Beton Pracetak Untuk Lining Saluran Irigasi

Desain Beton Pracetak Untuk Lining Saluran Irigasi sebagai berikut:
1. KP 03 Saluran
2. Kekuatan beton K-225 di tempat atau K-300 Pabrikasi
3. Kondisi tanah (kemiringan tidak menyebabkan tekanan aktif, tidak ekspansif/ekspansif kecil)
4. Bentuk penampang dan jenis saluran (penentuan bentuk panel atau profil)
5. Metoda pengangkutan dan pemasangan.
6. Jalan inspeksi
7. Muka air pada saat musim kering dan jagaan
8. Frame bila tanah ekspansif kecil

Dimensi yang harus diperhatikan dalam Desain Beton Pracetak Untuk Lining Saluran Irigasi sebagai berikut:
1. Tebal desain beton pracetak : 7 – 10 cm
2. Lebar dan panjang yang optimal (meminimalkan panjang sambungan dan memudahkan pengangkutan dan pemasangan)
3. Desain sambungan lidah dan alur
4. Sambungan dengan dowel/tie bar
5. Tulangan

Desain beton pracetak untuk lining saluran irigasi


Toleransi Dimensi Panel Pracetak
Pelaksanaan produksi panel pracetak haru sesuai  dengan dimensi dan detail  sesuai  dengan dimensi  serta mengikuti persyaratan dalam Tabel berikut :
Beton pracetak harus mempunyai suatu kuat lentur dan kuat tekan karakteristik minimum sesuai dengan  SNI 1972  tentang Cara uji slump beton,  SNI 1974  tentang Cara uji kuat tekan beton dengan benda uji silinder yang dicetak dan  SNI 4431 tentang Cara uji kuat lentur.
Profil - profi l  beton pracetak tersebut  mempertimbangkan berat, panjang  dan lebar untuk  pengangkutannya. Sambungan antar profil tersebut harus  meminimalisir dari kebocoran.

Desain sambungan lidah dan alur
Sambungan melintang jenis lidah dan alur  (shear  key) harus memperhatikan  hal - hal sebagai berikut:
1. Dimensi lidah alur sambungan melintang dan perkuatannya harus kuat sehingga tidak retak pada saat penyambungan lidah dan alur.
2. Lokasi  lidah alur harus dilekatkan  atau  disambung dengan perekat untuk beton  pracetak 

Panel Beton Pracetak
Persyaratan  panel  beton  pracetak  adalah  sebagai  berikut :
1. Panel-panel  beton  pracetak  yang  dibuat  dipabrik  dan memerlukan  pengangkutan  jarak  jauh ,  mutu  minimum yang dianjurkana dalah beton  K-300.
2. Panel-panel  beton  pracetak  yang  dibuat  langsung  dilokasi pekerjaan,  mutu  minimum yang  dianjurkan  adalah beton K-225.
3. Penentuan  tipe  dan  dimensi  beton  dengan mempertimbangkan  metode  pelaksanaan  pekerjaan ,  misal jenis  dan  bentuk  saluran ,  kondisi  tanah dan  pengeringan.
4. Campuran  beton normal  mengacu pada  SNI.
5. Panel  beton  pracetak  perlu  diberi  identitas  untuk mempermudah  penempatan  panel,  sesuai  dengan posisinya ;
6. Bila  panel  ditempatkan  pada  daerah  tikungan , dimensi / bentuk  panel  perlu  disesuaikan  dengan  geometri yan gada  dan  diperinci  dalam  gambar 

Batang  pengikat  ( tie bar)  mempunyai  persyaratan :
1. Harus  terbuat  dari  batang  baja  polos / ulir dengan  diameter  minimum  sesuai  denga  SNI 03 - 6812  tentang  Spesifikasi  anyaman  kawat baja  polos  yang  dilas  untuk  tulangan beton.
2. Tie  bar  harus  dilapisi  bahan  perekat beton sesuai  dengan  ketentuan .
3. Batang  pengikat dipasok  dalam  bentuk  ikatan dengan  panjang  tertentu  sesuai  dengan  persyaratan  yang  ditentukan ,  dalam  kondisi baik  dan  bebas  dari  bahan  pengotor ,  misal  : karat,  kotoran ,  bahan  lain yang  lepas,  minyak, gemuk,  cat,  lumpur,  atau  bahan - bahan  lainnya yang  tidak  dikehendaki;

Baja Tulangan
Penggunaan Baja  tulangan pada konstruksi harus  bebas dari  kotoran ,  minyak, lemak,  bahan-bahan  organik  lainnya ,  karat ,  kerak , yang dapat  mempengaruhi  ukuran serta  sifat fisik  harus  dibersihakan  sesuai  yang  disyaratkan  SNI  03 - 6812  tentang  Spesifikasi anyaman  kawat  baja  polos  yang  dilas  untuk tulangan   beton.

Bahan Penutup Sambungan
Bahan untuk penutup sambungan (Join Sealant) harus dapat dituangkan dalam keadaan panas dan dapat menutup seluruh celah dan kedap air. Tata cara pelaksanaan di lapangan harus sesuai dengan yang dianjurkan oleh pabrik.

Demikianlah penjelasan Desain Beton Pracetak Untuk Lining Saluran Irigasi. Semoga bermanfaat. Terimah kasih.

Baca Artikel...

Pedoman Penggunaan Beton Pracetak Pada Saluran Irigasi

A.Umum

Bahwa pelaksanaan pembangunan, peningkatan dan rehabilitasi prasarana irigasi bergantung pada kondisi cuaca, kondisi topografi,kondisi geologis, jadwal tanam, kondisi sosial masyarakat dan lamanya waktu pelaksanaan sehingga  memerlukan jenis konstruksi bangunan irigasi yang sesuai. Penggunaaan beton pracetak pada saluran irigasi merupakan salah satu cara untuk meningkatkan kualitas pekerjaan, mempercepat dan mempermudah proses pelaksanaan pekerjaan pembangunan, peningkatan dan rehabilitasi jaringan irigasi.

Beton pracetak pada saluran irigasi
Bahwa untuk menguraikan prosedur pelaksanaan pembuatan beton pracetak dalam rangka pelaksanaan pembangunan, peningkatan dan rehabilitasi jaringan irigasi dengan menggunakan beton pracetak tipe panel,pancang dan profil, perlu disusun pedoman penggunaan beton  pracetak pada saluran irigasi dengan ketentuan sebagai berikut :


B.Dasar Pembentukan
1.Peraturan Pemerintah Nomor 22 Tahun 1982 tentang Tata Pengaturan  Air (Lembaran Negara Republik Indonesia Tahun 1982 Nomor 37, Tambahan Lembaran Negara Republik Indonesia Nomor 3225)

2.Peraturan Presiden Republik Indonesia Nomor 15 Tahun 2015 tentang Kementerian Pekerjaan Umum dan Perumahan Rakyat (Lembaran Negara Republik Indonesia Tahun 2015 Nomor 16)

3.Peraturan Menteri  Pekerjaan Umum Dan Perumahan Rakyat  Nomor   06/PRT/M/2015  tentang Eksploitasi Dan Pemeliharaan  Sumber Air Dan Bangunan Pengairan (Berita Negara Republik Indonesia Tahun 2015 Nomor 531).

4.Peraturan Menteri Pekerjaan Umum Dan Perumahan Rakyat Nomor 15/PRT/M/2015 tentang  Organisasi dan Tata Kerja Kementerian Pekerjaan Umum Dan  Perumahan  Rakyat (Berita  Negara Republik Indonesia Tahun 2015 Nomor 881).

5.Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Nomor 12/PRT/M/2015 tentang Eksploitasi Dan Pemeliharaan Jaringan Irigasi (Berita Negara Republik Indonesia Tahun 2015 Nomor 537)

6.Peraturan  Menteri Pekerjaan Umum Dan Perumahan Rakyat Nomor 20/PRT/M/2015  tentang  Organisasi Dan Tata Kerja Unit Pelaksana Teknis  Kementerian  Pekerjaan Umum Dan Perumahan Rakyat (Berita Negara Republik Indonesia Tahun 2015 Nomor 1007) 

C.Maksud dan Tujuan
Maksud dari Pedoman Penggunaan Beton Pracetak Pada Saluran Irigasi  yaitu sebagai pedoman bagi Balai Besar  Wilayah Sungai / Balai Wilayah  Sungai di Direktorat Jenderal Sumber  Daya Air dalam melakukan  kegiatan pembangunan, peningkatan dan rehabilitasi jaringan irigasi dengan  menggunakan lining beton pracetak.

Tujuan dari Pedoman Penggunaan Beton Pracetak Pada Saluran Irigasi untuk memperjelas prosedur penggunaan beton pracetak dengan tipe panel, pancang dan profil untuk lining saluran  beton dalam rangka melakukan kegiatan pembangunan peningkatan dan rehabilitasi jaringan irigasi.

D.Ruang Lingkup
Ruang lingkup Surat Edaran ini meliputi :
1.Tahapan pembuatan lining saluran beton pracetak untuk. melakukan kegiatan pembangunan, peningkatan dan rehabilitasi jaringan irigasi.
2.Pengendalian Mutu pembuatan beton pracetak untuk lining saluran irigasi.

E. Materi Muatan
1. Tahapan pembuatan lining saluran beton pracetak terdiri dari Tahap Perencanaan dan Tahap Pelaksanaan.
a.Tahap Perencanaan:
Pada tahap perencanaan BBWS/BWS harus:
     1.Menentukan kondisi tanah yang akan digunakan
     2.Menentukan tipe atau jenis lining beton pracetak
     3.Membuat desain lining  beton pracetak
     4.Menentukan peralatan yang akan digunakan.

b.Tahap Pelaksanaan :
   Pada tahap pelaksanaan BBWS/BWS harus :
     1.Menentukan lokasi pencetakan beton pracetak
     2.Menentukan bahan cetakan beton pracetak
     3.Menentukan pelaksanaan produksi panel pracetak
     4.Percobaan penempatan panel dilapangan
     5.Pelaksanaan pemasangan panel beton pracetak.

2. Pengendalian  Mutu .
Dalam menerapkan pembuatan saluran irigasi menggunakan  beton pracetak mulai dari tahap perencanaan sampai dengan tahap pelaksanaan BBWS/BWS harus memperhatikan pengendalian mutu melalui:
a. Pengujian Sifat Kemudahan Pengerjaan;
b. Pengujian Kekuatan;
c. Penerimaan Panel Pracetak 
d. Penerimaan Unit - unit;
e. Penerimaan Sebelumny a ;
f. Perbaikan atas pekerjaan beton tidak memenuhi ketentuan ;
g. Uji pengaliran 

Dalam melaksanakan peningkatan dan rehabilitasi jaringan irigasi dengan menggunakan beton pracetak, penerapan keselamatan dan kesehatan kerja perlu di perhatikan. Keselamatan dan kesehatan kerja mempunyai pengertian pemberian perlindungan kepada
setiap orang yang berada di tempat kerja, yang berhubungan dengan pemindahan bahan baku, penggunaan peralatan kerja konstruksi, proses produksi, dan lingkungan sekitar tempat kerja. Kontraktor sebagai Penyedia jasa wajib menyediakan dan melaksanakan prosedur Keselamatan dan Kesehatan Kerja sesuai dengan peraturan yang berlaku.

Demikianlah penjelasan tentang pedoman penggunaan beton pracetak pada saluran irigasi. Semoga bermanfaat. Terimah kasih.

Baca Artikel...

Acuan Kekuatan Material Beton

Penggunaan Beton sebagai bahan bangunan untuk konstruksi dewasa ini semakin meningkat. Terlebih sifat beton yang dapat ditentukanterlebih dahulu yaitu dengan melakukan perencanaan serta akhir penggunaan dilakukan pengawasan yang cermat dan teliti terhadap bahan-bahan yang akan di gunakan sebagai bahan campuran beton.

kekuatan material beton sesuai SNI 03-2847-2002 dengan simbol f'c dengan satuan Mpa
Sebelum kita membahas judul pokok diatas yaitu acuan kekuatan material beton, terlebih dahulu kita harus mengetahui tentang "Beton" itu sendiri.
Dari banyak definisi yang menjelaskan tentang Beton yaitu Peraturan Beton Indonesia ( PBI ) 1971, ASTM C125 (Standard Definition of Terms Relating to Concrete and Concrete Technology) dan lain-lain, maka Beton dapat didefinisi sebagai campuran dari berbagai material yaitu agregat kasar, agregat halus, semen dan pasir dengan komposisi tertentu dicampur sehingga mencampai kekuatan pada durasi tetentu.

Kembali ke judul pokoacuan kekuatan material beton, maka acuan kekuatan material beton yang digunakan sebelum muncul Standar Nasional Indonesia ( SNI ), sebelumnya mengacu pada Peraturan Beton Indonesia (PBI) 1971 , dimana Acuan kekuatan material beton yang dijabarkan didalam Peraturan Beton Indonesia ( PBI ) 1971 didefinisikan dengan istilah “ K “ ( K = karakteristik ) dimana kekuatan material beton dinyatakan dalam kuat tekan benda uji berbentuk Kubus. ( Baca juga : pembuatan benda uji kubus ).

Tahun 1992 Tahun 1992 dikeluarkan Peraturan tentang beton yaitu SNI 03-2847-1992 tentang Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung dan pada tahun 2002 menjadi peraturan SNI 03-2847-2002 tentang Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung.Peraturan SNI 03-2847-2002 tentang Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung, Acuan Kekuatan Material Beton  didefinisikan dengan simbol f’c dengan satuan Mpa dan Pengujian kekuatan material beton dinyatakan dalam Kuat Tekan Benda Uji bentuk Silinder dengan ukuran diameter 15 cm dan tinggi 30 cm. ( Baca juga : pembuatan benda uji silinder ).

Perubahan Peraturan tentang beton yaitu SNI 03-2847-1992 tentang Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung tahun 1992  menjadi Peraturan SNI 03-2847-2002 dikarenakan  SNI 03-2847-2002 mengacu pada Peraturan SNI ACI 318.

Dari penjelasan diatas dapat ditarik kesimpulan bahwa Acuan Kekuatan Material Beton saat ini sesuai SNI 03-2847-2002 pengujian Kuat Tekan Benda Uji berbentuk silinder disimbolkan dengan f’c dengan satuan Mpa.

Demikianlah penjelasan tentang acuan kekuatan material beton semoga penjelasan diatas dapat bermanfaat.
Baca Artikel...

Pengendalian Mutu Pekerjaan Beton

Untuk mengetahui mutu hasil dari perkejaan beton maka perlu dilakukan uji beton. Benda uji beton umumnya berbentuk kubus dan silinder. Supaya menghasilkan mutu yang optimal dan sesuai dengan spesifikasi mutu beton maka perlu dilakukan pengendalian mutu beton.
Benda uji beton berbentuk kubus dan silinder
Penegendalian mutu yang dilakukan pada pekerjaan beton berguna untuk menjamin mutu beton selama pelaksanaan pekerjaan dan sesuai dengan spesifikasi. Hal hal yang harus diperhatikan dalam pengendalian mutu pada pekerjaan beton meliputi kegiatan :
1.  Pembuatan campuran percobaan
2.  Pengambilan benda uji
3.  Pembuatan benda uji
4.  Pemeriksaan benda uji dan mengadakan evaluasi mutu beton dan mutu pelaksanaan sesuai dengan PBI NI 2 1971
Benda uji beton berbentuk kubus
# Pembuatan Benda Uji
Pembuatan benda uji pada saat pelaksaan pekerjaan beton dengan cara yang salah akan memberikan hasil evaluasi mutu beton dan mutu pelaksanaan yang salah pula. Bedasarkan hal ini maka perlu dilakukan cara pembuatan benda uji yang betul. Bentuk dan ukuran benda uji umumnya dibuat sebagai berikut :
1.    Benda uji berbentuk kubus dengan ukuran sisi 10x 10 x 10 cm, 15 x 15 x 15 cm dan 20 x 20 x 20 cm.
2.    Benda uji berbentuk silinder dengan ukuran diameter 15 cm dan tinggi 30 cm.
3.    Ukuran minimum benda uji 3 – 5 kali ukuran butir agregat maksimum
4.    Untuk cetakan baja digunakan Baja dengan ukuran tepat dan tidak bocor serta dioles minyak agar mudah dibuka.

Cara pembuatan benda uji berbentuk kubus dengan ukuran 20 x 20 x 20 cm adalah sebagai berikut :
1. Benda uji yang telah disediahkan di isi dengan beton muda sampai ½ tinggi kemudian dipadatkan dengan tongkat pemadat baja Ø 5/8” panjang 60 cm (ujung dibulatkan) sebanyak 30 kali tusukan secara merata. Tongkat pemadat masuk sampai permukaan dasar cetakan.
2. Dilanjutkan dengan pengeisian cetakan dengan beton mudah sampai penuh. Kemudian dipadatkan lagi dengan tongkat pemadat sebanyak 30 kali tusukan secara merata. Tongkat pemadat harus masuk sampai permukaan lapisan dibawahnya.
3. Sisi-sis dari cetakan harus di ketuk dengan palu karet sampai kelihatan beton mengkilat atau tidak kelihatan lagi timbul gelembung-gelembung udara.
4. Kemudian permukaan beton harus diratakan dan ditutup dengan plastik/karung lembab, selanjutnya disimpan ditempat yang teduh dan bebas getaran selama 24 jam.
5. Setelah 24 jam buka cetakan, kemudian benda uji direndam dalam air (perawatan) atau disimpan dalam pasir basah sampai akan dilakukan pemeriksaan kekuatan beton pada umur 28 hari. Bila perlu pemeriksaan dapat dilakukan pada umur kurang dari 28 hari.

# Catatan :
1.  Untuk benda uji berbentuk kubus ukuran 10 x 10 x 10 cm dan 15 x 15 x 15 cm pelaksanaan pembuatan masing-masing benda uji sama seperti benda uji kubus ukuran 20 x 20 x 20 cm.

# Pembuatan Benda Uji Berbentuk Silinder
Untuk pembuatan benda uji berbentuk Silinder dengan ukuran 15 cm dan tinggi 30 cm langka-langka pembuatan benda uji sama sama seperti pada pembuatan benda uji berbentuk kubus dengan ukuran 20 x 20 x 20 cm, tetapi hanya pada pengisisan beton yang berbeda. Pada embuatan beton kubus berbentuk silinder pengisian beton dilakukan sebanyak 3 lapis dengan tiap lapis 10 cm. jumlah tusukan untuk pemadatan berbentuk silinder dilakukan sebnyak 15 kali tusukan secara merata pada tiap lapis.

Benda uji beton berbentuk silinder

# Pemeriksaan Benda Uji
Langka selanjutnya setelah pembuatan benda uji adalah dengan melakukan pemeriksaan benda uji. Pemeriksaan benda uji dimaksudkan untuk pengujian kekuatan tekan beton, dengan cara menghancurkan benda uji ( Destructive Testing ).
alat timbang untuk uji beton
Sebelum dihancurkan benda uji ditimbang terlebih dahulu menggunakan alat timbang. Pengujian benda uji dengan cara dihancurkan dilakukan di laboratorium dengan mesin tekan.
alat laboratorium untuk uji kekuatan beton
Demikianlah penjelasan tentang pengendalian mutu pekerjaan beton semoga penjelasan diatas dapat bermanfaat.
Baca Artikel...

Arti ‘K’ Pada Beton K-250

Beton adalah campuran dari agregat halus dan agregat kasar (kerikil, Pasir, batu pecah )dan campuran lain adalah semen dan air. Dari semua itu agregat halus, agregat kasar, semen dan air di satukan dalam perbandingan tertentu sehingga akan terjadi reaksi hidrolis.

Pengertian beton K-250>

Secara umum beton terdiri dari approx 15 % semen, 8 % air, 3 % udara. Selebihnya pasir dan kerikil. Setelah proses pencampuran beton mempunyai sifat yang berbeda-beda, tergantung dari cara pembuatannya. Komposisi campuran beton, cara mencapur, cara mengangkut, cara mencetak, cara memadat dan cara perawatan dan sebagainya akan mempengaruhi dari sifat-sifat beton itu sendiri.

Karakteristik Beton sekarang sudah sampai di K-300, mungkin bisa lebih dari itu. K-250 adalah karakteristik kekuatan beton rencana dengan kekuatan sampai batas beban 250 kg untuk area 1 cm2. Secara empiris ini dicapai pada umur 28 hari beton semenjak selesai pengecoran beton. 
Baca Artikel...

Proses Pembuatan Beton Normal

Konstruksi  bangunan bertingkat, baik bangunan bertingkat atau tidak, unsur bahan beton sangat diperlukan bahkan mempunyai fungsi yang dominan. Oleh krena itu diperlukan unsur yang terkait dalam pengendalian dan pengawasan mutu (Quality Control ) beton. Para perencana konstruksi lebih cendrung memilih beton di karenakan beton memiliki sifat-sifat yang menguntungkan, sifat-sifat beton itu antara lain : 

Proses pembuatan beton normal dengan bahan semen, agregat, pasir dan air

A. Bahan atau Material Beton
Sebelum beton digunakan untuk konstruksi, bahan beton harus disiapkan seperti semen, agregat kasar, agregat halus dan air. Semen yang digunakan adalah semen portland standar pabrik yaitu semen portland type 1. Agregat kasar adalah kerikil hasil desintegrasi alami dari batu atau berupa batu pecah yang diperoleh dari industri pemecah batu dan mempunyai ukuran antara 5 – 40 mm. 

Agregat halus adalah pasir alam sebagai hasil desintegrasi secara alam dari batu atau pasir yang dihasilkan oleh industri pemecah batu dan mempunyai ukuran butir terbesar 5.0 mm.


Air yang digunakan sebagai bahan campuran beton harus bersih dan bebas dari bahan-bahan kimia.
     B.     Proses Pembuatan Beton Normal
  Dalam proses pembuatan beton normal hal-hal yang harus diperhatikan antara lain :
  1. Pemeriksaan bahan atau material beton harus sesuai dengan standar pemeriksaan beton seperti SNI, SKSNI, ASTM DAN AASHTO

2. Pemeriksaan Agregat Kasar
Pemeriksaan Agregat kasar yang digunakan dam proses campuran beton meliputi :
a.Pemeriksan berat isi
b.Pemeriksaan berat jenis dan penyerapan
c.Pemeriksaan menggunakan analisa saringan
d.Pemeriksaan agregat dengan mesin Los Angeles

3. Pemeriksaan Agregat Halus
Pemeriksaan Agregat Halus yang digunakan dam proses campuran beton meliputi :
a.Pemeriksan berat isi
b.Pemeriksaan berat jenis dan penyerapan
c.Pemeriksaan menggunakan analisa saringan
d.Pemeriksaan Organik Im Purities

4. Pemeriksaan Air
Air yang digunakan untuk campuran beton harus bersih dan bebas dan tidak boleh mengandung asam, alkalin, bahan padat, bahan organik,minyak, lumut, gula, sulfar dan chlorida.

#  Perencanaan Rancangan Campuran Beton ( Job Mix Design Concrete )
Tujuan dari proses perencanaan campuran beton adalah untuk mendapatkan komposisi atau proporsi campuran beton yang sesuai standar mutu beton sehingga beton yang  digunakan pada konstruksi adalah mutu beton sesuai dengan rencana.

#  Percobaab Campuran ( Trial Mix )
Setelah diketahui komposisi atau proporsi campuran beton selanjutnya dilakukan percobaab campuran ( Trial Mix ) pada mesin pengaduk sehingga diperoleh contoh – contoh uji yang dicetak sesuai kebutuhan yaitu kubus atau silinder.


#  Slump Test
Percobaab Slump Test pada beton merupakan salah satu metoda yang digunakan untuk mengetahui Viscositas atau Kekentalan beton segar. Percobaab Slump Test dilakukan sebelum percetakan benda uji.


#  Perendaman Benda Uji
Beton yang telah dicetak dalam benda uji, kemudian dikeluarkan dari cetakan setelah beton berumur 24 jam, kemudian benda uji direndalam bak air. Proses perendaman benda uji sesuai dengan umur beton yang direncanakan, misalnya 3, 7, 14, 21, 28 hari.

#  Uji Kuat Tekan
Benda uji baik berupa kubus atau silinder selanjutnya dapat di uji tekan pada mesin tekan sesuai dengan umur beton yang telah direncanakan seperti diatas. Setelah benda uji kuat tekan dilakukan maka didapat atau dihasilkan Kuat Tekan Beton ( α hancur ).

#  Pelaporan
Dari evaluasi uji kuat tekan tersebut akan didapat Nilai “Kuat Tekan Beton” yang dirancang, sehingga dapat diketahui tercapai atau tidaknya Kuat Tekan yang ditargetkan ( f’cr ). Dari hasil pemeriksaan keseluruhan dirangkum dalam bentuk laporan

#  Pemeriksaan Beton Dengan Concrete Hammer Test
Pengujian kuat tekan beton dengan Concrete Hammer Test (Baca : Pengujian Beton Dengan Concret Hammer Test ). Maksud pengujian beton dengan alat Concrete Hammer test adalah untuk mengetahui kuat tekan beton yang telah di cor dilapangan. Pengujian beton dengan Concret Hammer Test dilakukan pada umur diatas 14 hari.


Demikianlah penjelasan tentang Proses Pembuatan Beton semoga penjelasan diatas dapat bermanfaat.



Baca Artikel...